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Introduction: Nuclear Reactor Physics

* Nuclear reactor core designs vary by coolant, neutron spectrum,
fuel types

“Light water” reactors: low-Z coolant/moderator, low-energy neutrons
- "“Fast” reactors: higher-Z coolant, higher-energy neutrons
* Interaction between physics strongly affects fission reactivity

— LWR: coolant boiling, strong fuel doppler affect (oxide)

— Fast reactor: structural expansion, weak fuel doppler affect (metal)
« Safety/performance of reactors inherently depends on coupling

between physics

* Localized 3D effects, e.g. near control blades or grid spacer
structures, affects safety & reliability, motivating need for much
higher fidelity than current homogenized methods
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Reactor Simulation is an Exascale Computing Problem

 Current generation of nuclear reactors
designed by experiment first,
computing second

— We can no longer do this for next-
generation reactors

Steam
Generator

* Neutron transport, thermal/fluid
transport with turbulence, structural
mechanics are each petascale+
computing problems

- To get the right answer, we need to do
all 3, coupled

Core
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Coupled Neutron, Fluid, Heat Transport

Neutron transport:
Q-V¥+Z(EWY = [[2,(ENWQ, EYQ dE' + X(E)| dEVE (B )| 2OV Q' B

in-scattering fission

Heat transport:

PCW'VT_V'(WT): Dvot — Dsaoy

Fluid transport:

%o 1 ..
pu-Vi=-Vp+—Vu
Re
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Coupled Neutron, Fluid, Heat Transport

Q-V¥+Z(EWY = [[2,(EWQ, EYQ dE' + X(E)| dEVE (B )| 2OV Q' B

T T rho, T-dependent T T

’ fission

pCpu -VT—V-(WT): it~ air heating

o 7 T
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Coupled Neutron, Fluid, Heat Transport

Code1 (UNIC or proxy)

Q-V¥+Z(EWY = [[2,(ENWQ, EYQ dE' + X(E)| dEVE (B )| 2OV Q' E)

T T rho, T-dependent T T
fission
pCpu-VT—V-(WT): Goot — Dsrarf heating
| \
' 1
pii Vi =—Vp+ Vi
© Code 2 (Nek5000 or proxy)
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Full/Original Physics Codes

Nek5000 UNIC
Physics Incompressible NS Boltzmann transport
Discretization SEM w/ LES turb FEM

(NXNxN GLL basis)

(linear, quadratic)

Solver

Native semi-implicit with
AMG

3-level hierarchy
(eigenvalue, energy,
space/angle), with PETSc
for space/angle

Materials, BCs

User-defined functions

Exodusll-like element
blocks, sidesets

Mesh type

Ucd hex

Ucd hex, tet, prism

Implementation

F77 + C, 100k lines

F90, 260k lines

Mesh, data storage

Common blocks

FO90 modules

Scalability

2000 Gorden Bell prize,
71% strong scaling on
262k cores

2009 Gordon Bell finalist,
76% strong scaling on
295k cores

Effort invested

~30 man-years

~10 man-years




Coupling Approaches

* Different flavors of coupling schemes have variations in stability,
accuracy, and software characteristics

M steady-state
AL N
t: k k+1---| |tk k+1 ...
A :< A >< A f A
Jacobi Gauss-Seidel

* Separate/original physics
components (A, B)

* Operator-split solution,
Jacobi or Gauss-Siedel

« Conditionally stable
« Convergence may be slow,
depending on relative

magnitude/variations of
coupling terms

S w0312

Tight:
-k k+1 ... 1 k k+1 ...
A A A A

Separate/original physics
components (A, B)

Physics compute Jacobian &
residual, driver (C) computes
new solution

Can be unconditionally stable

Convergence is better than
for loose coupling

May require physics
component modifications to
return Jacobians/residuals
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Full:

r

All equations solved
simultaneously, in same
coupled system

No iterations between
physics required

Physics components must
be combined, solution
procedures re-written



Coupling Considerations For CESAR

* For a variety of reasons, full coupling approach isn't the best choice

— Difficult to express T-dependence of nuclear cross sections in
differentiable form, making it difficult to incorporate in unified
non-linear solution procedure

— Neutron transport may not even be expressed in PDE form
(e.g. Monte Carlo), difficult to formulate Jacobian

— Difficult to develop single-physics module that performs at exascale, let
alone a fully coupled multi-physics code

* Structuring our coupled code work to allow simultaneous investigation
of multiple (loose and tight) coupling approaches

— Model coupled system as solution of individual physics (possibly in
original code modules) and explicit solution transfer for coupling
terms
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Coupling Considerations For CESAR

* For a variety of reasons, full coupling approach isn't the best choice

— Difficult to express T-dependence of nuclear cross sections in
differentiable form, making it difficult to incorporate in unified
non-linear solution procedure

— Neutron transport may not even be expressed in PDE form
(e.g. Monte Carlo), difficult to formulate Jacobian

— Difficult to develop single-physics module that performs at exascale, let
alone a fully coupled multi-physics code

* Structuring our coupled code work to allow simultaneous investigation
of multiple (loose and tight) coupling approaches

— Express coupled solution as solution of individual physics (possibly in
original code modules) and explicit solution transfer for coupling
terms

— Compose coupled code from 3 primary pieces: Coupe'
* Driver (Coupe') 0

* Physics modules (UNIC, Nek, or mini-apps)
Nek UNIC
* Solution transfer tool (MOAB & MBCoupler) A
|

l \/ Y
Data/Vis %\% MOAB/MBCoupler
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Coupe’ Coupled Physics Driver

 Designed to allow both loose (Operator-Split) and tight coupling
strategies

Tight coupling better resolves spatio-temporal coupling, but requires
more from individual physics (residuals, etc.)

Run-time selection of coupling scheme with other parameters fixed
allows apples-apples comparisons

« Coupe' coordinates:

— lIterations in a timestep and over timesteps
— Calling solution transfer

10/3/12

— Testing for convergence

* Coupe' framework has few minimal requirements on individual physics
from a software perspective:

Store corresponding mesh information to or read mesh info from MOAB
Push/pull coupled fields to/from MOAB tags

Provide functions that handle creation, destruction, setup, solve
Optionally, provide function for nonlinear residual

Optionally, provide the action of a preconditioner on a vector to use as
an accelerator in the coupled system solve
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Mesh-Oriented datABase (MOAB)

* Library for representing, manipulating structured, unstructured
mesh models

* Supported mesh types:
— FE zoo (vertices, edges, tri, quad, tet, pyramid, wedge, knife, hex)
— Polygons/polyhedra
— Structured mesh

* Optimized for memory usage first, speed second

* Implemented in C++, but uses array-based storage model

* Mesh I/O from/to various formats

— HDF5 (custom), vtk, CCMIO (Star CD/CCM+), Abaqus, CGM, Exodus
* Main parts:

— Core representation

— Tool classes (skinner, kdtree, OBBtree, ParallelComm, ...)

— Tools (mbsize, mbconvert, mbzoltan, mbcoupler, ...)
 Parallel model supports typical element-based decompositions, with
typical mesh-based functions (shared interface, ghost exchange,
ownership queries)
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MOAB-Based Solution Transfer

= Meshes: Each physics type is solved on an independent mesh whose
characteristics (element type, density, etc.) is most appropriate for the
physics

= Distribution: Each physics type and mesh is distributed
independently across a set of processors, defined by an MPI

communicator for each mesh
OR

2]
'y ey YpPay

" Implementation: On a given processor, all meshes are stored in a
single iMesh instance, and that instance communicates with all other
processors containing pieces of any of those meshes.
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Solution Transfer: 4 Steps

1. Initialization 3. Interpolation
g E T T g a. aggregate
request: indices
only!
source ‘ ﬁ%

mesh

target procs
store

b. aggregate reply:
integrated field

all kdtree roots . .
. . 4. Normalization
2. Point Location

Prio)

" Minimize data transferred
- Store index close to source

C. return index
to interpolated

P,

pomt
b. t (x,.2) . . . .
e field, communicate indices
interpolate points a. target f|nds 0n|y
candidate . .
D/éﬁm L, source procs " All communication

aggregated, using “crystal
router” for generalized all-
to-all

i:(x,y,2),h, (u,v, w) h,p,i

Source proc: index of mapped points: Target proc: local handle, source proc,
Target position, local element handle, remote index
param coords 15
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Solution Transfer: Performance, Accuracy

10000
/M Hexes 1000 B

== instant

=4¢=—pt loc
interp

- jdeal

0.1
0.01
0 : : ; : : . ; : |
8 16 32 64 128 256 512 1024 2048 4096
procs
1
2 01
©
——fixed hs
—— Ns5~ht
28M Tets i R
0.010 0.100
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Exascale Issues

* Partitioning physics over processors
* Parallel solution transfer

* Local tree search

* Memory sharing
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Solution Transfer: Distribution Over Processors

* Assuming fixed number of procs and fixed (possibly non-equal)
problem sizes for physics, 2 choices for partitioning physics
solutions over machine

* Homogeneous: each proc solves a piece of each physics
— Requires good strong scaling of each physics
— Can do both Jacobi- and Gauss-Siedel-type loose coupling
— Easier load balancing, even with sub-cycling in time

* Disjoint: each physics solved on set of procs disjoint from other
physics procs
— Lighter strong scaling requirements

— Gauss-Siedel scheme leaves processor sets idle, Jacobi requires
accurate prediction of runtime

* Our approach: don't over-constrain any of the underlying support
(i.e. solution transfer can support both homogeneous and disjoint
scenarios)
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Solution Transfer: Mesh Search Details

* Current parallel search method does linear search over top-level
boxes on each proc, which is both scalability and memory
problem

* Change to a rendezvous-type method, where intermediate set of
procs with deterministic partition of overall bounding box &
intersecting processor boxes directs packets to correct proc(s)

* Local search tree currently a kdtree, but probably more efficient to
use a bvh tree

— Tree search consists of tree traversal (cheap), in-leaf element query
(expensive); bvh adds tree complexity to reduce leaf complexity

* In process of implementing/testing bvh tree
* Will implement rendezvous method in early FY13
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Memory Sharing Between Physics, MOAB

« MOAB uses array-based storage of most “heavy” data, and
exposes API functions giving access to contiguous chunks of those
data (mesh definition & mesh-based variables)

Range::iterator iter = myrange.begin(); int count; double *data;

while (iter '= myrange.end()) {

tag iterate(tag_handle, iter, myrange.end(), count, (void*&)data ptr );

iter += count;

* Small applications show that this almost completely eliminates API

cost for accessing variable data memory owned by MOAB
 Advantages:

Eliminates memory copy between physics & backplane, saving
memory and time

Allows direct use of parallel services like I/O, in-situ viz

Simplifies workflow (pre, analysis, post) because no issues with
data formats for various physics

Will allow faster transition to memory manipulations for manycore,
GPU

The fine print: depends heavily on mesh, DOF ordering in physics

10/3/12
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Coupling/Datavis Proxy Application

* Purpose of proxy application: study specific aspect(s) of exascale problem

— Compute proxy: computation/communication kernel(s), with narrow option/feature
set

— Coupling/datavis: data-intensive, exercising overall simulation workflow

- Provide shared, reference implementation for calling data-oriented tasks needed
by most proxy activities

- Acquire representative raw data in the coupled application interface &
make available to coupling/datavis proxies

- Test & benchmark various options of data-oriented services
— Use results to influence co-design of hardware and software (libraries)

— Make proxies available to other subgroups (eg. GPGPUs, programming models,
performance modeling, library developers)

* Factors
- How well do proxies represent actual problems (in our case, real data)?
* Real features, eg., vortices, data distributions, outliers, correlations among variables

- Difficult if not impossible to generate without running actual solvers

* However, results can be stored and later read back into proxies without rerunning
simulation



Coupling/Datavis Proxy Approach

* Construct single high-level proxy shell implementing:
— Option processing (proxy type, mesh/data files, other parameters)
— library initialization (MOAB, vtk, maybe solvers)
— Coordination of I/O
* Individual options/functions for studying specific things:
a) Coupling & solution transfer
b) Data analysis
c) Visualization
d) Storage



(a) Coupling & Solution Transfer Proxy

* Questions/issues

— Performance, accuracy of
solution transfer

— Partition of multiple meshes over
processors

— Hybrid programming models & sl il e
partitioning over cores/nodes Sample mesh of
1M hexahedral

— Solution of post-transfer numerical cells

constraints (conservation/normalization)

* Method
— Reads two different test meshes

— Transfers solution from first mesh
to second

— Compute error for analytic solution data
— Measure performance/accuracy

Sample mesh of
1M tetrahedral
cells.



(b) Data Analysis Proxy

* Questions/Issues

— Size/data model of derived data

— Placement and scheduling of analysis tasks

— Resampling, interpolating, subsettting are valid operations
* Method

— Takes mesh interface handle

— Derive/compute new analysis data (e.g. Lambda-2 vorticity)



(c) Visualization Proxy

* Questions/Issues

— Memory savings vs. code
complexity from in-situ
visualization

— Placement and scheduling of
visualization work

 Method
— Takes mesh interface handle

— Call in-situ rendering of
various types (polygon,
volume rendering)

— Assess resource usage with
memory sharing vs.
deep copy

5K 4th-order spectral element mesh
with proxy CFD solution data,
rendered in wireframe mode.



(d) Storage Proxy App

* Questions/Issues:
— Checkpoint reading/writing performance
— Analysis data vs. checkpoint data?
— Storage-side format & layout affects on scaling
* Method
— Takes mesh interface handle
— Writes mesh to storage (checkpoint)
— Writes results of analysis or visualization proxy to storage

— Compare performance with I/0 benchmarks and published
performance for similar I/O workloads



Towards Full-Up Exascale Coupled Reactor Analysis

* Proxy apps should inform both hardware/middleware design as well
as various aspects of full-up exascale applications

* Physics (computation, communication)

— Performance of key mat-mat multiply kernel, scalability of pressure
solve & MOC methods, preconditioning affects on multi-layer

iteration (eigenvalue, energy, space), deep memory hierarchy
design

* Coupling/datavis (data size, complexity)
— Support for exascale-class datasets across software stack

* In many cases, improvements from proxies can directly inform full-
up codes

— Physics: many kernels isolated in relatively sooallrnds cnnmmants

Vor'ienperaiue

— Libraries: same ones being used for proxies

* Leveraging work on coupled reactor analysis
efforts from NEAMS targeted at science
problem on smaller machines

,,,,,,

/y/,/é/éhex1 test
I, 7 UNIC-Nek5000



Conclusions

* Coupled multi-physics comes in many forms; for reactor analysis,
loose, (various forms of) tight coupling hold the most promise

— Key research focus, interactions between scalability and numerics

» Co-design for coupling, and esp. datavis, involves not only
computation/communication kernels, but also software stack co-
design for exascale-class data

— Lots more moving (software) parts

* Proxy apps for this area are as much about data as
computation/communication

— Layout important, with added complexity of libraries & metadata

— In a sense, proxy app is closer to full-up app, since libraries are the
same
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